
Linear Regression
Measurement & Evaluation of HCC Systems



Linear Regression

Today’s goal: 
Evaluate the effect of multiple variables on an outcome 
variable (regression) 

Outline: 

- Basic theory 

- Simple regression in R 

- Extending this to multiple regression 

- Multiple regression in R



Theory
of linear regression



Theory

Any type of model: 
outcomei = model + errori 

Linear regression: 
The model is a line with 
an intercept (a) and a 
slope (b) 

Yi = a + bXi + ei
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Finding the best line
Yi = a + bXi + ei  

a and b are chosen so that 
the deviations (residuals) 
are minimized 

We know this! General: 
deviation =  
∑(observationi – model)2 

Goal: minimize sum of 
squared errors (SSr)
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Goodness of fit

How good is the model? 
We can use deviation for 
this as well! 

Compare against the 
deviation of the simplest 
model 

In this case: the mean
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Goodness of fit
Total sum of squares (SSt) 

Squared e from the mean
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Goodness of fit
Total sum of squares (SSt) 

Squared e from the mean 

Residual sum of sq. (SSr) 
Squared e from the model
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Goodness of fit
Total sum of squares (SSt) 

Squared e from the mean 

Residual sum of sq. (SSr) 
Squared e from the model 

Model sum of squares (SSm) 
SSt – SSr
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Goodness of fit
R-square model fit 

R2 = SSm / SSt 
Amount of variation in Y 
explained by the model 

F-ratio (and p-value) 
F = MSm/MSr 
How much did the model 
improve, compared to the 
error?
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Testing a predictor
If a predictor is bad, its slope 
(b) will be almost zero (like 
the mean) 

A good predictor has a 
slope that is significantly 
different from zero 

Compare slope (b) against 
variability of slope (SEb): 

t = b/SEb 
with df = N - p - 1
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Regression in R
look mom! no formulas!



Regression in R
Let’s start simple: 

File: Album Sales 2.dat, set Name to album2 
Dataset: album sales by promotion method 

Variables: 
adverts: $1000s spent on advertisement 
sales: 1000s of copies sold 
airplay: plays on the radio the week before release 
attract: attractiveness of the band



Scatterplot

Scatterplot of sales and adverts, with regression line and 
mean: 

ggplot(album2,aes(y=sales,x=adverts))+geom_point()
+geom_smooth(method=“lm",color="red",se=F)
+geom_line(aes(y=mean(album2$sales)),color="blue") 

Result: 

- A positive relationship 

- Regression line is noticeably different from the mean



A linear model

Write the regression model: 
salesModel <- lm(sales ~ adverts, data = album2) 

Get the results: 
summary(salesModel)



Output
Call: 
lm(formula = sales ~ adverts, data = album2) 

Residuals: 
     Min       1Q   Median       3Q      Max  
-152.949  -43.796   -0.393   37.040  211.866  

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 1.341e+02  7.537e+00  17.799   <2e-16 *** 
adverts     9.612e-02  9.632e-03   9.979   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 65.99 on 198 degrees of freedom 
Multiple R-squared:  0.3346, Adjusted R-squared:  0.3313  
F-statistic: 99.59 on 1 and 198 DF,  p-value: < 2.2e-16



Overall fit

The “Multiple R-squared” tells us the percentage of variance 
in sales explained by advert 

Seems to be 33.46% 

Can turn this into a correlation coefficient: √.3346 = .5784 

“F-statistic” gives us MSm/MSr, and a p-value 
Seems to be significant 
The model makes significantly a better prediction than the 
mean



Model parameters
Yi = a + bXi + ei 

a: the estimate for “(Intercept)” 
Is equal to the average sales with zero dollars spent on 
advertising (X=0) —> Yi = a + ei 

b: the estimate for “adverts” 
The change in the outcome associated with a 1 unit 
change in predictor 
For an +$1000 difference in advertising, the model 
predicts 96 extra album sales



Significance

b is significant if it is large relative to its standard error 
t = b/SEb, with df = N - p - 1 
Here, t = 9.979, and p < .001 

The advertising budget makes a significant contribution to 
predicting album sales 

Wait… where did I see that t-value before?



Using the model

album sales = 134.14 + 0.096*advertising budget 

How many albums am I likely to sell with a $100,000 
advertisement budget? 

134.14 + 0.096*100 = 143.74 -> around 143,740 albums 

What is the predicted effect of spending $50,000 extra on 
advertising? 

0.096*50 = 4.8 -> you will likely sell 4,800 more albums



Multiple Regression
regression with more than one predictor



Multiple Regression

outcomei = model + errori 

Multiple regression: 
The model is a line with an intercept (a) and several slopes 
(b1…bn) 

Yi = a + b1X1i + b2X2i + … + bnXni + ei 

This means you can predict album sales using advertising 
and airplay



Multiple Regression



Goodness of fit

R2 = SSm / SSt 
Same as before, but R2 is now called the “multiple R2” 
Combined effect of all predictors 
Total variance in Y explained by all Xes in the model 

R2 always gets larger when more predictors are used 
More predictors -> better fit



Comparing models
Compare models using the F-ratio: 

F(k, dfnew) = (N-k-1)R2change / k(1-R2new) 
k = # of additional parameters, R2change is the increase in R2, 
R2new is the R2 of the new model 

This only works for nested models 
The new model has the same parameters and data as the 
old model, plus more 
Otherwise, compare AIC or BIC (but makes sure the 
models use the same data!)



Selecting variables
Decide on your outcome variable (Y) 

Decide which Xes you definitely want to test 

Which other variables should you include? 

- Correlated with X but not Y? No, reduce model power 

- Correlated with Y but not X? Yes, increases precision 

- Correlated with both X and Y? Yes, may change the effect 
(think back to partial correlation!) 

Use this rule also when you’re designing your experiment!



Running regression

Use a combination of the following methods: 

- Hierarchical regression (start with most important vars, 
add more step-by-step) 

- Forced entry (run with all vars at once) 

- Stepwise (start with all, remove the worst-fitting variables 
one by one until only significant variables are left)* 

* be careful with this method! Better to do it by hand… 
Theory is a far better guideline than the data itself



Over-fitting
John von Neumann famously said: 

With four parameters I can fit an elephant, and with five I 
can make him wiggle his trunk. 

“Drawing an elephant with four complex parameters” by Jurgen Mayer, 
Khaled Khairy, and Jonathon Howard,  Am. J. Phys. 78, 648 (2010)



should be clear from this diagram that it is important to try to detect outliers to see whether the
model is biased in this way.

FIGURE 7.9 Graph demonstrating the effect of an outlier. The dashed line represents the original regression line
for these data (see Figure 7.3), whereas the solid line represents the regression line when an outlier is present

How do you think that you might detect an outlier? Well, we know that an outlier, by its nature,
is very different from all of the other scores. This being true, do you think that the model will
predict that person’s score very accurately? The answer is no: looking at Figure 7.9, it is evident
that even though the outlier has biased the model, the model still predicts that one value very badly
(the regression line is long way from the outlier). Therefore, if we were to work out the
differences between the data values that were collected, and the values predicted by the model, we
could detect an outlier by looking for large differences. This process is the same as looking for
cases that the model predicts inaccurately. The differences between the values of the outcome
predicted by the model and the values of the outcome observed in the sample are known as
residuals. These residuals represent the error present in the model. If a model fits the sample data
well then all residuals will be small (if the model was a perfect fit to the sample data – all data
points fall on the regression line – then all residuals would be zero). If a model is a poor fit to the
sample data then the residuals will be large. Also, if any cases stand out as having a large residual,
then they could be outliers.

The normal or unstandardized residuals described above are measured in the same units as
the outcome variable and so are difficult to interpret across different models. What we can do is to
look for residuals that stand out as being particularly large. However, we cannot define a universal
cut-off point for what constitutes a large residual. To overcome this problem, we use standardized
residuals, which are the residuals divided by an estimate of their standard deviation. We came
across standardization in section 6.3.2 as a means of converting variables into a standard unit of
measurement (the standard deviation); we also came across z-scores (see section 1.7.4) in which
variables are converted into standard deviation units (i.e., they’re converted into scores that are
distributed around a mean of 0 with a standard deviation of 1). By converting residuals into z-
scores (standardized residuals) we can compare residuals from different models and use what we
know about the properties of z-scores to devise universal guidelines for what constitutes an
acceptable (or unacceptable) value. For example, we know from Chapter 1 that in a normally
distributed sample, 95% of z-scores should lie between −1.96 and +1.96, 99% should lie between
−2.58 and +2.58, and 99.9% (i.e., nearly all of them) should lie between –3.29 and +3.29. Some
general rules for standardized residuals are derived from these facts: (1) standardized residuals

Outliers

An outlier is a data point that 
differs substantially from the 
model 

They have a very large 
residual (error) 

Outliers can bias your 
regression coefficients 

How can we detect them?



Residuals
Residual method: 

Take the residual (error) of each data point 
Divide it by the standard deviation (this creates a z-score) 

Assess the situation: 

- Any cases z > 3.29: clear outliers 

- If >1% of the cases z > 2.58: model is a very poor fit for 
some cases 

- If  > 5% of the cases z > 1.96: model is a rather poor fit for 
many cases



Influential cases
Influencer method 1: How does each data point influence the 
predicted outcomes?  

Cook’s distance: overall influence of the data point on the 
model  

>1 is cause for concern 

Hat values (leverage): the influence of the data point on the 
predicted values 

Average influence is (k+1)/n, anything twice (or trice) that 
is cause for concern



Influential cases
Influencer method 2: How does each data point influence 
the model parameters?  

DFBeta: run the model with and without the data point, 
observe the difference in each parameter  

You get one for each parameter, unstandardized 

Covariance ratio: convenient summary of the influence of a 
data point on the variances of the model parameters 

Should be  < 1+(3(k+1)/n) and > 1-(3(k+1)/n) 

Note: influential cases are worse than merely outlying cases!



Assumptions

Outcome should be quantitative, continuous, and 
unbounded 

Predictors should not be too highly correlated (see next 
slide) 

No variables correlated with both X and Y should be left out 

Homoscedasticity and independence 

Linearity (although we can test for some non-linear effects)



Multicollinearity
Both X1 and X2 are predictors of Y, but highly correlated with 
each other 

Correlation of X1 with Y is .4 but controlling for X2 it is .2 
Correlation of X2 with Y is .4, but controlling for X1 it is .2 

Two possibilities: 
X1 has a high b (e.g. b1 = .6) and X2 has a low b (e.g. b2 = .3) 
X1 has a low b (e.g. b1 = .3) and X2 has a high b (e.g. b2 = .6) 

Which one is correct?



Multicollinearity

The wizard is having a hard time deciding on b1 and b2! 

Consequences: 

- b1 and b2 are untrustworthy, so it is hard to tell which X is 
most important 

- the benefit of having them both is small: with either X1 or 
X2, R2 = .40, with both, R2 = .45



Multicollinearity

Tests for multicollinearity: 

- High correlation between Xes 

- Variance inflation factor (VIF), should be lower than 10 (or 
5)



Cross-validation

How can we make sure the model would work the same on 
the population? (or on a different sample?) 

Use the adjusted R2 

Use data splitting 
Build your model on half the data, test it on the other half



MLR in R
MLR = Multiple Linear Regression



MLR in R

Run a linear model predicting album sales by adverts, airplay, 
and attractiveness: 

salesModel2 <- lm(sales ~ adverts + airplay + attract, data = 
album2) 
summary (salesModel2) 

R2 has increased from .335 to .665 
Airplay and attractiveness account for an additional 33% of 
variance in sales



Parameters

Model: salesi = -26.61 + 0.085*adverti + 3.37*airplayi + 
11.09*attracti + ei 

A $1000 difference spent on ads is associated with a 
predicted 85 extra albums sold, keeping attractiveness and 
airplay constant 

Two bands with the same level of advertising and 
attractiveness but a 1-airplay difference are expected to 
differ 3367 in album sales



Parameters

Model: salesi = -26.61 + 0.085*adverti + 3.37*airplayi + 
11.09*attracti + ei 

A band rated one unit higher in attractiveness is expected to 
sell 11,086 more albums than a band with a one unit lower 
attractiveness but the same airplay and advertising



Parameters
What does the parameter for “a” (-26.61) mean? 

With zero advertisement, zero airplay, and zero 
attractiveness, the album is expected to sell -26610 copies 

That’s nonsense! 
Also, zero attractiveness is impossible (ranges for 1 to 10) 
But even with attract = 1, the result is negative 

This is why your outcome variables should ideally be 
unbounded!



Parameters
How can we compare the effect of adverts (b1 = 0.085) with 
the effect of airplay (b2 = 3.37)? 

Difficult; they are not measured on the same scale! 

Solution: standardize them! —> Beta 
Load package: QuantPsyc 
lm.beta(salesModel2) 

Interpretation: a 1 SD difference in advertisement is related 
to a 0.51 SD difference in sales



CIs

Confidence intervals are easy to obtain: 
confint(salesModel2) 

This gives us an idea of how certain we can be of our model 
parameters 

If you want to be more certain, collect more data!



Compare models

Since the models are nested, we can conduct the F-ratio 
test: 

anova(salesModel, salesModel2) 

Fit is significantly improved 
F(2, 196) = 96.447, p < .001



What to report

First model: 
R-square, F-test 
b-parameters and their significance 

Subsequent models: 
R-square increase, F-test comparison with previous model 
b-parameters and their significance



Outliers etc.
Standardized residuals: 

album2$rstand <- rstandard(salesModel2) 

Large standardized residuals are > 1.96 
album2$rstand.large < - (album2$rstand > 1.96 | 
album2$rstand < -1.96) 

Show them!  
album2[album2$rstand.large,c(“adverts”, ”sales”, ”airplay”, 
“attract”, “rstand”)]



Outliers etc.
Cook’s distances, hat values (leverage), and covariance ratios 

album2$cook <- cooks.distance(salesModel2) 
album2$leverage <- hatvalues(salesModel2) 
album2$covratio <- covratio(salesModel2) 

Check them out (for data points with large residual): 
album2[album2$rstand.large,c(“cook”, “leverage”, 
“covratio”)] 
Only covariance ratio of case 169 is a problem, but still 
okay given the Cook’s distance << 1



Multicollinearity

Check the Variance Inflation Factor: 
load the car package, if you haven’t already 
vif(salesModel2) 
well below 10 (and even 5) 

If we find problems, we may need to remove some Xes



Plotting residuals
Run the plots of the model: 

plot(salesModel2) 

First plot: residuals by estimated value of Y (fitted value) 
This should look random 
If it fans out: heteroscedasticity! If it curves: non-linearity! 

Second plot: Q-Q plot to test deviations from normality 
Straight line: residuals are normal 

Can check the latter also with a histogram of rstud



Solving problems

What if we have problems? (e.g. heteroscedasticity, non-
normality, outliers, non-linearity) 

Try transforming your outcome variable and/or predictors 

What if that doesn’t work? 
Use bootstrapping!



Bootstrapping
Write a bootstrap function: 

bootReg <- function(samples, i){ 
  fit <-lm(sales~adverts+airplay+attract, data=samples[i,]) 
  return(coef(fit)) 
} 

Run a bootstrap sample: 
bootResults <- boot(album2, bootReg, 2000) 
bootResults



Bootstrapping

Get confidence intervals: 
boot.ci(bootResults, type=“bca”, index = 1) 
boot.ci(bootResults, type=“bca”, index = 2) 
boot.ci(bootResults, type=“bca”, index = 3) 
boot.ci(bootResults, type=“bca”, index = 4) 

Compare to confint(salesModel2)



Categorical predictors
A look forward to the t-test and ANOVA



Categorical X

What if X is binary, e.g. Male/female? 
Simply include in the regression, coded 0-1 
b = the difference between the two groups 

What if X is k groups, e.g. religion, city, …? 
Designate one group as the baseline 
Create k-1 dummy variables for the other groups, and put 
them in the regression 
bs = the difference between each group and the baseline



Dummy variables

Y = a + bX + e 

male: X = 0; female: X = 1 

Y = a (for male) 

Y = a + b (for female) 

b = difference between male and female



Dummies in R
Read the data 

File: GlastonburyFestivalRegression.dat, set Name to gfr 
Dataset: festival-goer hygiene (repeated measures) 

Variables: 
ticknumb: participant id 
music: music affiliation—crusty, indy, metaller, or NMA 
day1, day2, day3: hygiene level at days 1-3 (0-4 scale) 
change: change in hygiene levels from day 1 to day 3



Dummies in R

Let’s take “No Musical Affiliation” as a baseline 

Create contrast for the rest: 
crusty_v_NMA<-c(1,0,0,0) 
indie_v_NMA<-c(0,1,0,0) 
metal_v_NMA<-c(0,0,1,0) 
contrasts(gfr$music)<-cbind(crusty_v_NMA, 
indie_v_NMA, metal_v_NMA)



Dummies in R

Model: changei = a + b1*crusty_v_NMAi + b2*indie_v_NMAi 
+ b3*metal_v_NMAi + ei 

Interpret the results 
a shows the mean change of people with NMA 
bs show differences between each music type and NMA 
What is the level of Y in a certain group? Simple: a + b 
What about other differences? And overall effects? That’s 
ANOVA!



Dummies in R

Run the regression: 
dummyModel <- lm(change ~ music, data=gfr) 
summary(dummyModel) 

Interpret the results 
What is the mean change for NMA? 
What is the difference between indie and NMA? Is it 
significant? 
What is the level of change for indie?



1- vs. 2-sided tests
Lets say you test the satisfaction between a red background 
color and a blue background color…What is your hypothesis? 

Mred > Mblue? 
Mred < Mblue? 

Mred ≠ Mblue? 

If you don’t know, your test should be 2-sided (default) 
You test p(>|t|) 

If you have an idea, your test should be 1-sided 
You test p( > t) or p( < –t), which is 1/2*p(>|t|)



1- vs. 2-sided tests

t

p(>t)

p(>|t|)



“It is the mark of a truly intelligent person  
to be moved by statistics.” 

George Bernard Shaw 
 


